Groep (algebra)

’n verzoamelienge met doaby ’n bewerkinge die an ’n antal eigenschappn vuldoet

Ne groep is in wiskunde 'n verzoamelienge met doaby 'n bewerkinge die an 'n antal eigenschappn vuldoet. De theorie van de groepn is ountwikkeld deur Evariste Galois.

Definitie

bewerkn

Ne groep   is 'n nie-lege verzoamelinge G me 'n bewerkinge   me de volgende eigenschappn:

  • Inwendig en overol gedefinieerd:  
  • Associativiteit:  .
  • Neutroal element (of êenheidselement):  
  • Invers element (of symmetrisch element):  .

Ne groep moe nie nôodzakelijk commutatief zyn:

  • Commutativiteit:  

Ne groep die wel commutatief is, noemn we ne commutatieve of abelse groep (noa Niels Abel).

Eigenschappn

bewerkn
  • 't Neutroal element is ênig.
  • 't Invers element is ênig.

Vôorbilden

bewerkn
  • De gehêle getalln met de optellinge, is ne commutatieve groep:( , +).
  • De reële getalln (zounder nul) met de vermenigvuldiginge is ne commutatieve groep:( \{0}, ·).